Search results for "Robot kinematics"
showing 10 items of 20 documents
Kinematic synthesis of a new 3D printing solution
2016
Low-cost production of metal parts is a challenge nowadays in the Additive Manufacturing world and new methods are being developed. The MIM technique is an innovative approach for 3D printing. This method requires a machine with suitable kinematics capable of generating the adequate movements. The object of this article is the kinematic synthesis of a 5Dofs robot, based on two PKM machines, for additive manufacturing in order to compliant with the requirements of this new technology. Robot kinematics have been optimized by genetic algorithm in order to cover the required workspace and the design of the robot and outline of the control system are also given.
Adaptive neuro-fuzzy inference system for kinematics solutions of redundant robots
2016
This written paper presents aspects concerning the implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in the resolution of a redundant serial robot kinematics. The kinematics solutions are divided into two categories: direct kinematics solutions and inverse kinematics solutions. To be able to control a robot the most important solutions are the ones for the inverse kinematics since one knows the position and the final orientation of the end effector and needs to determine the relative displacement or movements into the robot couplings. To obtain the optimal solutions for the inverse kinematics of a redundant robot the mathematical equations were based onto the redundancy ci…
Multi-agent control architecture for RFID cyberphysical robotic systems initial validation of tagged objects detection and identification using Playe…
2016
International audience; The objective of this paper is to describe and validate a multi-agent architecture proposed to control RFID Cyber-Physical Robotic Systems. This environment may contain human operators, robots (mobiles, manipulators, mobile manipulators, etc.), places (workrooms, walls, etc.) and other objects (tables, chairs, etc.). The proposed control architecture is composed of two types of agents dispatched on two levels. We find at the Organization level a Supervisory agent to allow operators to configure, manage and interact with the overall control system. At the Control level, we distinguish the Robots agents, to each robot (mobiles, manipulators or mobile manipulators) is a…
Kinematic calibration method for a 5-DOF Gantry-Tau parallel kinematic machine
2013
In this paper a new step-wise approach to kinematic calibration of a 5-DOF Gantry-Tau parallel kinematic machine (PKM) is presented. The approach can be adapted to the modular design of the PKM and the calibration could easily perform part of the assembly instructions for the machine. By using measurements from a laser tracker and least-squares estimates of polynomial functions, a typical accuracy of about 20 micrometer was achieved for the base actuators. The remaining set of 30 general parameters for the hexapod link structure and spherical joint connections were successfully estimated using the Complex search-based evolutionary algorithm.
Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing
2016
This work presents the study of the accuracy of an industrial robot KR5 arc HW, used to perform quality inspections of components with complex shapes. Metrology techniques such as laser tracking and large volume photogrammetry were deployed to quantify both pose and dynamic path accuracies of the robot in accordance with ISO 9283:1998. The overall positioning pose inaccuracy of the robot is found to be almost 1 mm and path inaccuracy at 100% of the robot rated velocity is 4.5 mm. The maximum pose orientation inaccuracy is found to be 14 degrees and the maximum path orientation inaccuracy is 5 degrees. Despite of the significant maximum inaccuracies, uncertainty of a robotic scanning applica…
The economic metaphor of Italian politics for dynamic coalition regeneration in the robocup competition of Aibo robots
2005
The variation version of the economic metaphor of Italian politics, an architecture that loosely takes inspiration from the political organizations of democratic governments, following the example of Italian government, and which provides a solution for the coordination of a spare colony of robots, is competent to allow the coordination of the behaviors of a team of four robots in order to play soccer in the Robocup competition. The development of an evolution of economic metaphor of Italian politics is now outlined. This new approach proposes a mechanism to make a new coalition caused by the failure of the government strategy and by a general inefficiency of the whole colony during the rea…
Inverse kinematic control of an industrial robot used in Vessel-to-Vessel Motion Compensation
2017
An increased level of complex offshore load handling operations is expected due to an increased amount of floating wind turbines, remote fish farms, and autonomous shipping, and in general more advanced operations to be carried out at sea. A common problem for these applications is that both equipment and personnel have to be transported between two floating vessels at sea. An investigation of the Vessel-to-Vessel Motion Compensation (VVMC) problem may increase the efficiency and safety of such operations in the future. In this paper, a control algorithm has been developed and experimentally tested in the Norwegian Motion Laboratory featuring two Stewart platforms (SPs), an industrial robot…
Semantic Approach to Dynamic Coordination in Autonomous Systems
2009
In open systems where the components, i.e. the agents and the resources, may be unknown at design time, or in dynamic and self-organizing systems evolving with time, there is a need to enable the agents to communicate their intentions with respect to future activities and resource utilization to resolve coordination issues dynamically. Ideally, we would like to allow ad-hoc interaction, where two standalone independently-designed systems are able to coordinate whenever a need arises. The Semantic Web based approach presented in this paper aims at enabling agents to coordinate without assuming any design-time ontological alignment of them. An agent can express an action intention using own v…
Learning of Cooperative Behaviour in Robot Populations
2016
This paper addresses convergence and equilibrium properties of game theoretic learning algorithms in robot populations using simple and broadly applicable reward/cost models of cooperation between robotic agents. New models for robot cooperation are proposed by combining regret based learning methods and network evolution models. Results of mean-field game theory are employed in order to show the asymptotic second moment boundedness in the variation of cooperative behaviour. The behaviour of the proposed models are tested in simulation results, which are based on sample networks and a single lane traffic flow case study.
Introducing a new method for efficient visualization of complex shape 3D ultrasonic phased-array C-scans
2017
Automated robotic inspection systems allow the collection of large data volumes, compared to existing inspection systems. To maximize the throughput associated with the non-destructive evaluation phase, it is crucial that the reconstructed inspection data sets are generated and examined rapidly without a loss of detail. Data analysis often becomes the bottleneck of automated inspections. Therefore, new data visualization tools, suitable to screen the NDT information obtained through robotic systems, are urgently required. This paper presents a new approach, for the generation of three-dimensional ultrasonic C-scans of large and complex parts, suitable for application to high data throughput…